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SHIFTS IN NUCLEAR MAGNETIC RESONANCE SPECTRA OF PYRIMIDINE BASES
INDUCED BY AROMATIC HYDROCARBONS

I. Rosenthal
Department of Chemistry, The Weizmann Institute of Science, Rehovoth, Israel
(Received in UK 2 June 1969; accepted for publication 10 July 1969)

Molecular association between nucleic acids and aromatic hydrocarbons has been
reportefl in the literature (1). Such association is likely to occur at the purine and pyrimidine

basic sites in the nucleic acids.

In the present study the nature of the association between the pyrimidine bases and
benzene and toluene was investigated using the nuclear magnetic resonance technique. To
this end attention was confinedtol, 3 -dimethyluracil (DMU) and 1, 3-dimethylthymine (DMT),

pyrimidine bases possessing adequate solubility characteristics.

The n.m.r. spectrum of DMU (I) exhibits four absorption signals with relative intensities
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1:1:3:3. The pair of singlets appearing at B =b. 64 and B =6. 72 arise from absorption of the
two methyl groups and have been assigned as 1-methyl and 3-methyl respectively. The n.m.r.

spectrum of DMT (II) shows an additional signal at "B =8. 115 due to the 5-methyl group.

Upon replacing CCly in a solution of DMU or DMT with aromatic solvents both the 1- and
3-methyl resonance signals are shifted to higher field with the 1-methyl singlet having a
greater shift than its 3-methyl counterpart. Thus at a given proportion of aromatic solvent
to CCl, the 1- and 3-methyl singlets overlap; increase of this ratio will shift the 1-methyl

singlet to higher field than the 3-methyl. Chemical shift data are given in Table I (2).
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It has been shown (4) that n. m.r. data in molecular complex systems can be analyzed by

the equation:

1 1 < 1 + 1

(&1 9mbap m; & p

where (Aobs)i is the observed shift of acceptor protons relative to the shift of acceptor

protons in the absence of complexing donor, is the corresponding shift of acceptor

5p
protons in the pure complex and Qm is the equilibrium quotient for association of the

complex (5) The concentration of the donor is represented by mi in mol

kg
Based on the shifts for 1-methyl y L was plotted against —n—ll— to give a straight
obs
line, whose slope a and intercept were determined by a least-squares analysis.
m 8D 'AD

The resulted equilibrium quotients of DMU and DMT complexes with benzene and toluene

are given in Table II.

Table II, . Benzene Toluene
DMU 0.232 0. 316
DMT 0.124 0.151

These results may lead to the conclusion that the aromatic molecule associates with the
pyrimidine ring in a vertical stacking arrangement where the 1-methyl group will be either
above or below the aromatic ring and will thus be affected by the aromatic ring currents.
Furthermore, it may be concluded that both pyrimidines act as acceptors in these complexes,
this being shown by the fact that progressively greater methyl subtitution on the benzene

ring ceases increase in the equilibrium quotients (6). These results are in agreement with
the model that aromatic hydrocarbon molecules acting as election donors will avoid the
negative end of a dipole (7, 8) thus preferentially solvating the pyrimidine molecule close

to Nl‘

The electron acceptor characteristics of pyrimidine bases may lead to a better

understanding of the mechanism of photoreduction of these compounds (9).
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